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Abstract

In this paper, an improved theoretical interfacial stress analysis is presented for simply supported concrete beam
bonded with a FRP plate. The adherend shear deformations have been included in the present theoretical analyses
by assuming a linear shear stress through the thickness of the adherends, while all existing solutions neglect this effect.
Remarkable effect of shear deformations of adherends has been noted in the results. Indeed, the resulting interfacial
stresses concentrations are considerably smaller than those obtained by other models which neglect adherent shear
deformations. It is shown that both the normal and shear stresses at the interface are influenced by the material and
geometry parameters of the composite beam. This research is helpful for the understanding on mechanical behavior
of the interface and design of the FRP–RC hybrid structures.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Fiber reinforced plastics (FRP) materials have been recognized as new innovative materials for concrete
rehabilitation and retrofit. Since concrete is poor in tension, a beam without any form of reinforcement will
fail when subjected to a relatively small tensile load. Therefore, the use of the FRP to strengthen the con-
crete is an effective solution to increase the overall strength of the structure. In recent years, many studies
have been carried out on this retrofitting method (e.g. An et al., 1991; Saadatmanesh and Ehsani, 1991;
Sharif et al., 1994; Chajes et al., 1994; Quantrill et al., 1996a,b; Arduini and Nanni, 1997; Wu et al.,
0020-7683/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
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Nomenclature

Ai (i = 1,2) the cross-sectional area of adherend ‘‘i’’
Ei (i = 1,2) the elastic modulus of adherend ‘‘i’’
Ea the elastic modulus of adhesive
Ga the transverse shear moduli of adhesive
Gi (i = 1,2) the transverse shear moduli of the adherend ‘‘i’’
I the second moment of area
KS the shear stiffness of the adhesive
Kn normal stiffness of the adhesive per unit length
M(x) the bending moment
MT(x) the total applied moment
Ni (i = 1,2) the longitudinal resultant force for adherend ‘‘i’’
P the concentrated load
UN

i ðx; yÞ ði ¼ 1; 2Þ longitudinal displacements in adherend ‘‘i’’ induced by the longitudinal forces
V(x) shear force
W N

i ði ¼ 1; 2Þ the transverse displacement in adherend ‘‘i’’ induced by the longitudinal forces
b2 the width of the soffit plate
q the uniformly distributed load
ti (i = 1,2) the thickness of adherend ‘‘i’’
ta the thickness of adhesive
u1 the longitudinal displacement at the base of adherend 1
u2 the longitudinal displacement at the top of adherend 2
uN

1 the longitudinal displacement induced by the longitudinal forces at the interface between the
upper adherend and the adhesive

uN
2 the longitudinal displacement induced by the longitudinal forces at the interface between the

lower adherend and the adhesive
wi (i = 1,2) vertical displacements of adherend ‘‘i’’
yi (i = 1,2) distances from the bottom of adherend 1 and the top of adherend 2 to their respective cen-

troid
e1 strain at the base of adherend 1
e2 strain at the top of adherend 2
eM

i ði ¼ 1; 2Þ strains induced by the bending moment at the adherend ‘‘i’’
eN

i ði ¼ 1; 2Þ strains induced by the longitudinal forces at the adherend ‘‘i’’
rxy(i) (i = 1,2) the shear stresses in adherend ‘‘i’’
rn the normal stress in the adhesive
ci (i = 1,2) the shear strain in adherend ‘‘i’’
sa the shear stresses through the thickness of adhesive
rN

i ði ¼ 1; 2Þ longitudinal normal stresses for adherend ‘‘i’’
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1997, 2002; Malek et al., 1998; Saadatmanesh and Malek, 1998; Spadea et al., 1998; Triantafillou and Anto-
nopoulos, 2000; Chen and Teng, 2001, 2003; Bakis et al., 2002; Smith and Teng, 2002a,b). This plate bond-
ing technique has many advantages including ease of application due to the high strength-to-weight ratio of
FRPs, minimization of disturbances to existing operations, and high corrosion resistance. An important
failure mode for such strengthened members is the debonding of the FRP plate from the member because
of high interfacial stresses near the plate end. Important contributions on debonding strength models have
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been made by Oehlers (1992), Baluch et al. (1995) and Raoof et al. (2000) for RC beams bonded with
steel plates and Smith and Teng (2002a,b), Saadatmanesh and Malek (1998), Yuan et al. (2004) and
Gao et al. (2005) for RC beams bonded with FRP plates. Accurate predictions of interfacial stresses
are thus important for designing against debonding failures. Ascione and Feo (2000) developed a finite
element model to predict the shear and the normal stresses in the adhesive layer of plated reinforced con-
crete beams and the numerical results agreed with the experimental results obtained by Jones et al. (1988)
and the theoretical results presented by Roberts (1989). Roberts and Haji-Kazemi (1989) proposed an
analytical solution based on partial interaction theory, for predicting the shear and normal stress concen-
trations in adhesive joints. This solution is for a uniformly distributed load only. Taljsten (1997) proposed
a solution based on direct deformation compatibility to determine the interfacial stresses. Smith and Teng
(2001), having carried out a review of the approximate closed-form solutions for interfacial stresses in
literature, presented a new solution which was intended for application to beams with a bonded thin
plate. The new solution of Smith and Teng (2001) seems that it is the more accurate widely applicable
solution, particularly when the flexural stiffness of the bonded plate becomes significant. Shen et al.
(2001) have developed a complementary energy method to study the interfacial stresses for simply sup-
ported RC beams and slabs bonded with a thin composite plate or steel plate. Rabinovich and Frostig
(2000) and Yang et al. (2002) presented closed-form high-order analyses of reinforced concrete beams
strengthened with FRP plates, which satisfy the free surface condition at the ends of the adhesive layer.
The solution methodology is general in nature and can be applied to the analysis of other types of com-
posite structure.

The objective of this investigation is to improve the famous method developed by Smith and Teng
(2001) by incorporating with the adherend shear deformations. Indeed, it is reasonable to assume that
the shear stresses, which develop in the adhesive, are continuous across the adhesive–adherend interface.
In addition, equilibrium requires the shear stress be zero at the free surface. The importance of including
shear-lag effect of the adherents was shown by Tsai et al. (1998). These latter, have used the same theory
presented here, to study adhesive lap joints. The obtained results are in good agreement with those of
experimental and numerical results. Shear deformation in the adherents are ignored in the models men-
tioned above, possibly due to the relatively small values compared to longitudinal normal deformations in
some cases, or due to the complexity of formulation. The experimental results presented by Jones et al.
(1988) and those of Ascione and Feo (2000) using finite element method show that the shear stress reduce
to zero in cut-off section. However, the methods developed by Malek et al. (1998), Roberts (1989), Rob-
erts and Haji-Kazemi (1989), Taljsten (1997) and Smith and Teng (2001) predict maximum values for the
shear stresses at the same section. The presented method predicts also, maximum values in cut-off section,
but comparatively to those of the cited methods above, the computed interfacial stresses are considerably
smaller than those obtained by other models which neglect adherent shear deformations. Hence, the
adopted improved model describes better actual response of the FRP–RC hybrid beams and permits
the evaluation of the interfacial stresses, the knowledge of which is very important in the design of such
structures.
2. Research significance

The most common failure modes for FRP-strengthened RC beams are debonding of the FRP plate or
ripping of the concrete cover. These types of failures prevent the strengthened beam for reaching its ulti-
mate flexural capacity, and therefore they must be included in design considerations. Both of these prema-
ture failure modes are caused by shear and normal stress concentrations in adhesive layer. Closed form
solutions of stress concentrations are required in developing design guidelines for strengthening reinforced
concrete beams with FRP plates.
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3. Theoretical derivation

A differential section dx, can be cut out from the FRP strengthened concrete beam (Fig. 1) as shown in
Fig. 2. The composite beam is made from three materials: concrete (or RC concrete), adhesive layer and
FRP reinforcement. In the present analysis, linear elastic behaviour is regarded to be for all the materials;
the adhesive is assumed to only play a role in transferring the stresses from the concrete to the FRP rein-
forcement and the stresses in the adhesive layer do not change through the direction of the thickness.
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Fig. 1. Simply supported beam strengthened with bonded plate.
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Fig. 2. Forces in infinitesimal element of a soffit-plated beam.
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3.1. Shear stress distribution along the FRP–concrete interface

The strains in the concrete near the adhesive interface and the external FRP reinforcement can be ex-
pressed as, respectively:
e1ðxÞ ¼
du1ðxÞ

dx
¼ eM

1 ðxÞ þ eN
1 ðxÞ ð1Þ

e2ðxÞ ¼
du2ðxÞ

dx
¼ eM

2 ðxÞ þ eN
2 ðxÞ ð2Þ
where u1(x) and u2(x) are the longitudinal displacements at the base of adherend 1 and the top of adherend
2, respectively. eM

1 ðxÞ and eM
2 ðxÞ are the strains induced by the bending moment at the adherend 1 and 2,

respectively and they are written as follow:
eM
1 ðxÞ ¼

y1

E1I1

M1ðxÞ and eM
2 ðxÞ ¼

�y2

E2I2

M2ðxÞ ð3Þ
where E is the elastic modulus and I the second moment of area. The subscripts 1 and 2 denote adherends 1
and 2, respectively. M(x) is the bending moment while y1 and y2 are the distances from the bottom of adher-
end 1 and the top of adherend 2 to their respective centroid.

eN
1 ðxÞ and eN

2 ðxÞ are the unknowns longitudinal strains of the concrete and FRP reinforcement, respec-
tively, at the adhesive interface and they are due to the longitudinal forces. These strains are given as follow:
eN
1 ðxÞ ¼

duN
1 ðxÞ
dx

; eN
2 ðxÞ ¼

duN
2 ðxÞ
dx

ð4Þ
where uN
1 ðuN

2 Þ represents the longitudinal force-induced adhesive displacement at the interface between the
upper (lower) adherend and the adhesive.

To determine the unknowns longitudinal strains eN
1 ðxÞ and eN

2 ðxÞ, shear deformations of the adherends
are incorporated in this analysis. It is reasonable to assume that the shear stresses, which develop in the
adhesive, are continuous across the adhesive–adherend interface. In addition, equilibrium requires the
shear stress be zero at the free surface. Using the same methodology developed by Tsai et al. (1998), this
effect is taken into account. A parabolic variation of longitudinal displacements U N

1 ðx; yÞ and U N
2 ðx; yÞ in

both adherends (concrete beam and soffit plate) is assumed.
U N
1 ðx; yÞ ¼ A1ðxÞy2 þ B1ðxÞy þ C1ðxÞ ð5Þ

U N
2 ðx; y0Þ ¼ A2ðxÞy02 þ B2ðxÞy0 þ C2ðxÞ ð6Þ
where y(y 0) is a local coordinate system with the origin at the top surface of the upper (lower) adherend
Fig. 2.

The shear stresses in the two adherends are given by
rxyð1Þ ¼ G1cxyð1Þ ð7Þ
rxy0ð2Þ ¼ G2cxy0ð2Þ ð8Þ
With
cxyðiÞ ¼
oUN

i

oy
þ oW N

i

ox
; i ¼ 1; 2 ð9Þ
G1 and G2 are the transverse shear moduli of the adherend 1 and 2, respectively. Neglecting the variations of
transverse displacement W N

i (induced by the longitudinal forces) with the longitudinal coordinate x.
cxyðiÞ �
oUN

i

oy
ð10Þ
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and the shear stresses are expressed as
rxyð1Þ ¼ G1ð2A1y þ B1Þ ð11Þ

rxy0ð2Þ ¼ G2ð2A2y0 þ B2Þ ð12Þ
The shear stresses must satisfy the following conditions:
rxyð1Þðx; t1Þ ¼ rxy0ð2Þðx; 0Þ ¼ sðxÞ ¼ sa ð13Þ

rxyð1Þðx; 0Þ ¼ 0; rxy0ð2Þðx; t2Þ ¼ 0 ð14Þ
t1, t2 are the thickness of adherend 1 and 2, respectively.
Condition (13) follows from continuity and the assumption of the uniform shear stresses (s(x) = sa)

through the thickness of adhesive. Condition (14) states there is no shear stresses at the top surface of
the adherend 1 (i.e. at y = 0) and at the bottom surface at the adherend 2 (i.e. at y 0 = t2). These conditions
yield
rxyð1Þ ¼
sðxÞ
t1

y ð15Þ

rxy0ð2Þ ¼ 1� y 0

t2

� �
sðxÞ ð16Þ
Then with a linear material constitutive relationship the adherend shear strain c1 for the adherend 1 and c2

for the adherend 2 are written as
cxyð1Þ ¼ c1 ¼
sa

G1t1

y ð17Þ

cxy0ð2Þ ¼ c2 ¼
sa

G2

1� y 0

t2

� �
ð18Þ
The longitudinal displacement functions U N
1 for the upper adherend and U N

2 for the lower adherend, due to
the longitudinal forces, are given by
UN
1 ðyÞ ¼ UN

1 ð0Þ þ
Z y

0

c1ðyÞdy ¼ U N
1 ð0Þ þ

sa

2G1t1

y2 ð19Þ

UN
2 ðy0Þ ¼ uN

2 þ
Z y0

0

c2ðy 0Þdy0 ¼ uN
2 þ

sa

G2

y0 � y02

2t2

� �
ð20Þ
where UN
1 ð0Þ represents the displacement at the top surface of the upper adherend (due to the longitudinal

forces) and uN
2 is the longitudinal force-induced adhesive displacement at the interface between the adhesive

and lower adherend.
Note that due to the perfect bonding of the joints, the displacements are continuous at the interfaces

between the adhesive and adherends. As a result, the uN
2 should be equivalent to the lower adherend dis-

placement at the interface and uN
1 (the adhesive displacement at the interface between the adhesive and

upper adherend) should be the same as the upper adherend displacement at the interface. Based on Eq.
(19) the uN

1 can be expressed as
uN
1 ¼ U N

1 ðy ¼ t1Þ ¼ U N
1 ð0Þ þ

sat1

2G1

ð21Þ
Using Eq. (21), Eq. (19) can be rewritten as
UN
1 ðyÞ ¼ uN

1 þ
sa

2G1t1

y2 � sat1

2G1

ð22Þ
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The longitudinal resultant forces, N1 and N2 for the upper and lower adherends, respectively, are
N 1 ¼ b1

Z t1

0

rN
1 ðyÞdy ð23Þ
and
N 2 ¼ b2

Z t2

0

rN
2 ðy0Þdy 0 ð24Þ
where rN
1 and rN

2 are longitudinal normal stresses for the upper and lower adherends, respectively. By
changing these stresses into functions of displacements and substituting Eqs. (20) and (22) into the displace-
ments, Eqs. (23) and (24) can be rewritten as
N 1 ¼ E1b1

Z t1

0

dU N
1

dx
dy ¼ E1A1

duN
1

dx
� t1

3G1

dsa

dx

� �
ð25Þ
and
N 2 ¼ E2b2

Z t2

0

dU N
2

dx
dy 0 ¼ E2A2

duN
2

dx
þ t2

3G2

dsa

dx

� �
ð26Þ
Hence, the longitudinal strains induced by the longitudinal forces Eq. (4) can be expressed as
eN
1 ðxÞ ¼

duN
1 ðxÞ
dx

¼ N 1

E1A1

þ t1

3G1

dsa

dx
ð27Þ

eN
2 ðxÞ ¼

duN
2 ðxÞ
dx

¼ N 2

E2A2

� t2

3G2

dsa

dx
ð28Þ
Substituting Eqs. (27), (28) and (3) into Eqs. (1) and (2), respectively, these latter become:
e1ðxÞ ¼
du1ðxÞ

dx
¼ y1

E1I1

M1ðxÞ þ
N 1ðxÞ
E1A1

þ t1

3G1

dsðxÞ
dx

ð29Þ

e2ðxÞ ¼
du2ðxÞ

dx
¼ �y2

E2I2

M2ðxÞ þ
N 2ðxÞ
E2A2

� t2

3G2

dsðxÞ
dx

ð30Þ
where N(x) are the axial forces in each adherend, A the cross-sectional area.
The shear stress in the adhesive can be expressed as follows:
sa ¼ sðxÞ ¼ KS½u2ðxÞ � u1ðxÞ� ð31Þ

where KS ¼ Ga

ta
is shear stiffness of the adhesive, G a and ta are shear modulus and thickness of the adhesive,

respectively; u1(x) and u2(x) are the longitudinal displacements at the base of adherend 1 and the top of
adherend 2. Differentiating the above expression we obtain
dsðxÞ
dx
¼ KS

du2ðxÞ
dx

� du1ðxÞ
dx

� �
ð32Þ
Consideration of horizontal equilibrium gives:
dN 1ðxÞ
dx

¼ �b2sðxÞ ð33Þ

dN 2ðxÞ
dx

¼ b2sðxÞ ð34Þ
where
N 2ðxÞ ¼ NðxÞ ¼ b2

Z x

0

sðxÞ ð35Þ
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and
N 1ðxÞ ¼ �NðxÞ ¼ �b2

Z x

0

sðxÞ ð36Þ
b2 is the width of the soffit plate.
Assuming equal curvature in the beam and soffit plate, the relationship between the moments in the two

adherends can be expressed as
M1ðxÞ ¼ RM2ðxÞ ð37Þ
With
R ¼ E1I1

E2I2

ð38Þ
Moment equilibrium of the differential segment of the plated beam in Fig. 2 gives:
MTðxÞ ¼ M1ðxÞ þM2ðxÞ þ NðxÞðy1 þ y2 þ taÞ ð39Þ
where MT(x) is the total applied moment.
The bending moment in each adherend, expressed as a function of the total applied moment and the

interfacial shear stress, is given as
M1ðxÞ ¼
R

Rþ 1
MTðxÞ � b2

Z x

0

sðxÞðy1 þ y2 þ taÞdx
� �

ð40Þ
and
M2ðxÞ ¼
1

Rþ 1
MTðxÞ � b2

Z x

0

sðxÞðy1 þ y2 þ taÞdx
� �

ð41Þ
The first derivative of the bending moment in each adherend gives:
dM1ðxÞ
dx

¼ R
Rþ 1

V TðxÞ � b2sðxÞðy1 þ y2 þ taÞ½ � ð42Þ
and
dM2ðxÞ
dx

¼ 1

Rþ 1
½V TðxÞ � b2sðxÞðy1 þ y2 þ taÞ� ð43Þ
Substituting Eqs. (29) and (30) into Eq. (32) and differentiating the resulting equation once yields:
d2sðxÞ
dx2

¼ KS

�y2

E2I2

dM2ðxÞ
dx

þ 1

E2A2

dN 2ðxÞ
dx

� y1

E1I1

dM1ðxÞ
dx

� 1

E1A1

dN 1ðxÞ
dx

� �

� KS

t2

3G2

þ t1

3G1

� �
d2sðxÞ

dx2
ð44Þ
Substitution of the shear forces (Eqs. (42) and (43)) and axial forces (Eqs. (35) and (36)) into Eq. (44) gives
the following governing differential equation for the interfacial shear stress.
d2sðxÞ
dx2

� K1b2

ðy1 þ y2Þðy1 þ y2 þ taÞ
E1I1 þ E2I2

þ 1

E1A1

þ 1

E2A2

� �
sðxÞ þ K1

y1 þ y2

E1I1 þ E2I2

� �
V TðxÞ ¼ 0 ð45Þ
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where
K1 ¼
1

ta

Ga

þ t1

3G1

þ t2

3G2

� � ð46Þ
For simplicity, the general solutions presented below are limited to loading which is either concentrated or
uniformly distributed over part or the whole span of the beam, or both. For such loading, d2VT(x)/dx2 = 0,
and the general solution to Eq. (45) is given by
sðxÞ ¼ B1 coshðkxÞ þ B2 sinhðkxÞ þ m1V TðxÞ ð47Þ

where
k2 ¼ K1b2

ðy1 þ y2Þðy1 þ y2 þ taÞ
E1I1 þ E2I2

þ 1

E1A1

þ 1

E2A2

� �
ð48Þ
and
m1 ¼
K1

k2

y1 þ y2

E1I1 þ E2I2

� �
ð49Þ
B1 and B2 are constant coefficients determined from the boundary conditions.

3.2. Normal stress distribution along the FRP–concrete interface

The normal stress in the adhesive can be expressed as follows:
rnðxÞ ¼ KnDwðxÞ ¼ Kn½w2ðxÞ � w1ðxÞ� ð50Þ

where Kn is normal stiffness of the adhesive per unit length and can be deduced as
Kn ¼
rnðxÞ
DwðxÞ ¼

rnðxÞ
DwðxÞ=ta

1

ta

� �
¼ Ea

ta

ð51Þ
w1(x) and w2(x) are the vertical displacements of adherend 1 and 2, respectively.
Differentiating Eq. (50) twice results in
d2rnðxÞ
dx2

¼ Kn

d2w2ðxÞ
dx2

� d2w1ðxÞ
dx2

� �
ð52Þ
Considering the moment–curvature relationships for the beam to be strengthened and the external rein-
forcement, respectively:
d2w1ðxÞ
dx2

¼ �M1ðxÞ
E1I1

;
d2w2ðxÞ

dx2
¼ �M2ðxÞ

E2I2

ð53Þ
The equilibrium of adherend 1 and 2, leads to the following relationships:

Adherend 1:
dM1ðxÞ
dx

¼ V 1ðxÞ � b2y1sðxÞ and
dV 1ðxÞ

dx
¼ �b2rnðxÞ � q ð54Þ
Adherend 2:
dM2ðxÞ
dx

¼ V 2ðxÞ � b2y2sðxÞ and
dV 2ðxÞ

dx
¼ b2rnðxÞ ð55Þ
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Based on the above equilibrium equations, the governing differential equations for the deflection of adher-
ends 1 and 2, expressed in terms of the interfacial shear and normal stresses, are given as follows:

Adherend 1:
d4w1ðxÞ
dx4

¼ 1

E1I1

b2rðxÞ þ
y1

E1I1

b2

dsðxÞ
dx
þ q

E1I1

ð56Þ
Adherend 2:
d4w2ðxÞ
dx4

¼ � 1

E2I2

b2rðxÞ þ
y2

E2I2

b2

dsðxÞ
dx

ð57Þ
Substitution of Eqs. (56) and (57) into the fourth derivation of the interfacial normal stress obtainable from
Eq. (50) gives the following governing differential equation for the interfacial normal stress:
d4rnðxÞ
dx4

þ Eab2

ta

1

E1I1

þ 1

E2I2

� �
rnðxÞ þ

Eab2

ta

y1

E1I1

� y2

E2I2

� �
dsðxÞ

dx
þ qEa

taE1I1

¼ 0 ð58Þ
The general solution to this fourth-order differential equation is
rnðxÞ ¼ e�bx C1 cosðbxÞ þ C2 sinðbxÞ½ � þ ebx C3 cosðbxÞ þ C4 sinðbxÞ½ � � n1

dsðxÞ
dx
� n2q ð59Þ
For large values of x it is assumed that the normal stress approaches zero, and as a result C3 = C4 = 0. The
general solution therefore becomes:
rnðxÞ ¼ e�bx½C1 cosðbxÞ þ C2 sinðbxÞ� � n1

dsðxÞ
dx
� n2q ð60Þ
where
b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eab2

4ta

1

E1I1

þ 1

E2I2

� �
4

s
ð61Þ

n1 ¼
y1E2I2 � y2E1I1

E1I1 þ E2I2

� �
ð62Þ
and
n2 ¼
E2I2

b2ðE1I1 þ E2I2Þ
ð63Þ
C1 and C2 are constant coefficients determined from the boundary conditions.

3.3. Application of boundary conditions

The same loads cases used by Smith and Teng (2001) are considered in the present method.
A simply supported beam is investigated which is subjected to a uniformly distributed load and an arbi-

trarily positioned single point load as shown in Fig. 3. This section derives the expressions of the interfacial
shear and normal stresses for each load case by applying suitable boundary conditions.

3.3.1. Interfacial shear stress for a uniformly distributed load
As is described by Smith and Teng (2001) the interfacial shear stress for this load case at any point is

written as



L 

q 

Uniformly Distributed Load 

b 

p 

L 

Single Point Distributed Load
 

p p

L 

b b

Two Symmetric Point Load  

(a)

(b)

(c)

Fig. 3. Load cases.
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sðxÞ ¼ m2a
2
ðL� aÞ � m1

h i qe�kx

k
þ m1q

L
2
� a� x

� �
0 6 x 6 Lp ð64Þ
where q is the uniformly distributed load and x, a, L and Lp are defined in Fig. 1. Contrary, to the method
presented by Smith and Teng (2001), the expression of m2 in the present method which take into account
the shear deformation of adherends become:
m2 ¼
K1y1

E1I1

ð65Þ
3.3.2. Interfacial shear stress for a single point load

The general solution for the interfacial shear stress for this load case is (Smith and Teng, 2001):

a < b:
sðxÞ ¼

m2

k
Pa 1� b

L

� �
e�kx þ m1P 1� b

L

� �
� m1P coshðkxÞe�k 0 6 x 6 ðb� aÞ

m2

k
Pa 1� b

L

� �
e�kx � m1

Pb
L
þ m1P sinhðkÞe�kx ðb� aÞ 6 x 6 Lp

8>><
>>: ð66Þ
a > b:
sðxÞ ¼ m2

k
Pb 1� a

L

� �
e�kx � m1P

b
L

0 6 x 6 Lp ð67Þ
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where P is the concentrated load and k = k(b � a). The expression of m1, m2 and, takes into consideration
the shear deformation of adherends, which is neglected by Smith and Teng (2001).

3.3.3. Interfacial shear stress for two point loads

The general solution for the interfacial shear stress for this load case is (Smith and Teng, 2001):

a < b
Table
Dimen

Concre
Steel
Adhes
sðxÞ ¼

m2

k
Pae�kx þ m1P � m1P coshðkxÞe�k 0 6 x 6 ðb� aÞ

m2

k
Pae�kx þ m1P sinhðkÞe�kx ðb� aÞ 6 x 6

Lp

2

8>><
>>: ð68Þ
a > b
sðxÞ ¼ m2

k
Pbe�kx 0 6 x 6 Lp ð69Þ
3.3.4. Interfacial normal stress: general expression for all three load cases

As is described by Smith and Teng (2001) the constants C1 and C2 in Eq. (60) are determined using the
appropriate boundary conditions and they are written as follow:
C1 ¼
Ea

2b3taE1I1

½V Tð0Þ þ bMTð0Þ� �
n3

2b3
sð0Þ þ n1

2b3

d4sð0Þ
dx4

þ b
d3sð0Þ

dx3

� �
ð70Þ

C2 ¼ �
Ea

2b2taE1I1

MTð0Þ �
n1

2b2

d3sð0Þ
dx3

ð71Þ
where
n3 ¼
Eab2

ta

y1

E1I1

� y2

E2I2

� �
ð72Þ
The above expressions for the constants C1 and C2 have been left in terms of the bending moment MT(0)
and shear force VT(0) at the end of the soffit plate. With the constants C1 and C2 determined, the interfacial
normal stress can then be found using Eq. (60) for all three load cases.
4. Comparison of predictions with experimental data

The predicted stresses by the present theory have been compared to those of experimental results ob-
tained by Jones et al. (1988). The geometry and materials properties of the specimen are summarized in
Table 1. As it can be seen from Fig. 4 the predicted theoretical results agree with the experimental results
1
sions and material properties

te b1 = 155 mm t1 = 225 mm E1 = 31,000 MPa
b2 = 125 mm t2 = 6 mm E2 = 200,000 MPa

ive ba = 125 mm ta = 1.5 mm Ea = 280 MPa
Ga = 108 MPa
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Fig. 4. Comparison of theoretical results with experimental results for beam F31 tested by Jones et al. (1988).
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presented by Jones et al. (1988). The experimental results presented by Jones et al. (1988) and those of Asci-
one and Feo (2000) using finite element method show that the shear stress reduce to zero in cut-off section.
However, the methods developed by Smith and Teng (2001), Roberts (1989) and Malek et al. (1998) predict
maximum values for the shear stresses at the same section. The presented method predicts also, maximum
values in cut-off section, but comparatively to those of the cited methods above, the computed interfacial
stresses are considerably smaller than those obtained by other models which neglect adherent shear defor-
mations. On the other hand, Tsai et al. (1998) have used the same theory to study adhesive lap joints. The
obtained results are in good agreement with those of experimental and numerical results.
Table 2
Geometric and material properties

Component Width (mm) Depth (mm) Young�s modulus (MPa) Poisson�s ratio Shear modulus (MPa)

RC beam b1 = 200 t1 = 300 E1 = 30000 0.18 –
Adhesive layer ba = 200 ta = 2.0 Ea = 3000 0.35 –
GFRP plate b2 = 200 t2 = 4.0 E2 = 50000 0.28 G12 = 5000
CFRP plate b2 = 200 t2 = 4.0 E2 = 140,000 0.28 G12 = 5000
Steel plate b2 = 200 t2 = 4.0 E2 = 200,000 0.3 –
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Fig. 5. Comparison of interfacial shear and normal stresses for an RC beam with a bonded CFRP soffit plate subjected to a UDL.
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5. Numerical comparisons

The effect of adherend transverse shear stiffness on the maximum shear and normal stress is examined by
comparing the results obtained with the present theory and those determined from the famous method
developed by Smith and Teng (2001). For this, an RC beam strengthened with a glass–fiber reinforced plas-
tic (GFRP), CFRP or steel soffit plate is analyzed. The beams are simply supported and subjected to a cen-
tral point load or a uniformly distributed load. A summary of the geometric and material properties is given
in Table 2. The span of RC beam is L = 3000 mm, the distance from the support to the end of the plate is
a = 300 mm, the mid-point load is 150 kN and UDL is 50 kN/m.

Fig. 5 plots the interfacial shear and normal stresses for the example RC beam bonded with a CFRP
plate for the UDL case, while Fig. 6 is a similar plot for the mid-point load case. Overall, the interfacial
stresses predicted by the present method almost agree with those of Smith and Teng (2001), except near
the free edge, where the present theory predicts lower values (Figs. 5b and 6b). Hence, it is apparent that
the adherend shear deformation reduces the interfacial stresses concentration and thus renders the adhesive
shear distribution more uniform. The interfacial normal stress is seen to change sign at a short distance
away from the plate end.

The results of the peak interfacial shear and normal stresses (at the end of the soffit plate) are given in
Tables 3 and 4 for the RC beam strengthened by bonding GFRP, CFRP or steel plate. As it can be seen
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Fig. 6. Comparison of interfacial shear and normal stresses for an RC beam with a bonded CFRP soffit plate subjected to a mid-point
load.



Table 3
Comparison of peak interfacial shear and normal stresses: UDL

Theory RC beam with GFRP
plate

RC beam with CFRP
plate

RC beam with steel plate

s (MPa) rn (MPa) s (MPa) rn (MPa) s (MPa) rn (MPa)

Smith and Teng (2001) 2.392 1.640 3.834 2.100 4.443 2.247
Present 1.085 0.826 1.791 1.078 2.120 1.175

Table 4
Comparison of peak interfacial shear and normal stresses: mid-point load

Theory RC beam with GFRP
plate

RC beam with CFRP
plate

RC beam with steel plate

s (MPa) rn (MPa) s (MPa) rn (MPa) s (MPa) rn (MPa)

Smith and Teng (2001) 2.677 1.837 4.310 2.364 5.003 2.533
Present 1.228 0.935 2.051 1.234 2.438 1.350
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Fig. 7. Effect of plate material on interfacial stresses in strengthened beam: (a) normal stress; (b) shear stress.
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from the results, the peak interfacial stresses assessed by the present theory are smaller compared to those
given by Smith and Teng�s solution (2001). This implies that adherend shear deformation is an important
factor influencing the adhesive interfacial stresses distribution.
6. Interfacial stresses for different parameters

In this section, numerical results of the present solution are presented to study the effect of various
parameters on the distributions of the interfacial stresses in an RC beam bonded with FRP or steel plate.
These results are intended to demonstrate the main characteristics of interfacial stress distributions in these
strengthened beams. The numerical results are presented in Figs. 7–10.

The example RC beam has a span of 3000 mm and the cross-sectional height t1 = 300 mm. The material
properties of the RC beam and the adhesive adopted in the parametric study are, respectively:
Eð1Þ1 ¼ 30.0 GPa; mð1Þ12 ¼ 0.18 and Ea ¼ 3.0 GPa; ma ¼ 0.35
The material of the strengthening plate was considered to one of the following three: glass fibre reinforced
polymer (GFRP) composite, CFRP composite and steel.

All three layers have the equal width b2 = 200 mm and the beam is subjected to a uniformly distributed
load 50 kN/m.
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Fig. 8. Effect of plate length on interfacial stresses in CFRP-strengthened beam: (a) normal stress; (b) shear stress.
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Fig. 7 gives interfacial normal and shear stresses for the RC beam bonded with a steel plate, CFRP plate
and GFRP plate, respectively, which demonstrate the effect of plate material properties on interfacial stres-
ses. The length of the plate is Lp = 2400 mm, and the thickness of the plate and the adhesive layer are both
2 mm. The results show that, as the plate material becomes softer (from steel to CFRP and then GFRP),
the interfacial stresses become smaller, as expected. This is because, under the same load, the tensile force
developed in the plate is smaller, which leads to reduced interfacial stresses. The position of the peak inter-
facial shear stress moves closer to the free edge as the plate becomes softer.

Fig. 8 shows the interfacial stresses for beams bonded with CFRP plates of different lengths (Lp = 2200,
2400 and 2600 mm, respectively). Again, the thicknesses of the plate and the adhesive layer are both 2 mm.
It is seen that, as the plate terminates further away from the supports, the interfacial stresses increase
significantly.

The effect of the thickness of the CFRP plate (t2 = 1, 2 and 3 mm, respectively) on interfacial stresses is
shown in Fig. 9, and the effect of the thickness of the adhesive layer (ta = 1, 2 and 3 mm, respectively) is
0 10 20 30 40 50 60

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

CFRP
Lp = 2400 mm
t a = 2 mm

 t 2 = 1 mm
 t 2 = 2 mm
 t 2 = 3 mm

CFRP
Lp = 2400 mm
t a = 2 mm

 t 2 = 1 mm
 t 2 = 2 mm
 t 2 = 3 mm

σ n
 (M

P
a)

Distance from the plate end (mm)

0 10 20 30 40 50 60

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

τ (
M

Pa
)

Distance from the plate end (mm)

(a)

(b)

Fig. 9. Effect of plate thickness on interfacial stresses in CFRP-strengthened beam: (a) normal stress; (b) shear stress.
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Fig. 10. Effect of adhesive layer thickness on interfacial stresses in CFRP-strengthened beam: (a) normal stress; (b) shear stress.
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shown in Fig. 10. Both the normal and the shear stresses are increased as a result of an increase in the plate
thickness. This effect is similar to that of an increase in the plate elastic modulus shown in Fig. 7. It can be
seen from Fig. 10 that the thickness of adhesive layer affects only the normal and shear stress concentra-
tions, hardly the stress levels. However, design of the properties and thickness of the adhesive is a difficult
problem. An optimization design of the adhesive is expected.
7. Conclusion

The interfacial stresses in the FRP–RC hybrid beam were investigated by an improved theoretical method.
The adherend shear deformations have been included in the theoretical analyses by assuming linear shear
stress distributions through the thickness of the adherends. The classical solutions which neglect the adherend
shear deformations over-estimate the non-uniformity of the adhesive stresses distributions and maximum
interfacial stresses. The new solution is general in nature and may be applicable to all kinds of materials.
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